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INTRODUCTION

The research progress on calculations of interfacial stress in abrupt
junctions and its effect on the defect state of the interface has yielded
significant progress in the form of a series of papers. The first paper 1is
coauthored with Professor J. H. van der Merwe and has been submitted to the
Journal of Applied Physics. The second paper in the series is being complet-
ed. As the title indicates the sharp interfaces in a multilayered super-
lattice is treated for the case of equal elastic constants and layer thick-
nesses. Part II of the series 1s for the same case but unequal elastic
constants and thicknesses. Part III of the series is not well formed but is
aimed at multilayers with different misfits such as those of step graded
junctions or layers of altered lattice constants by means other than composi-
tion variation e.g., variations 1in binding states from layer to layer. The
series 1s expected to conclude with Part IV which will treat abrupt interfaces
in mesa structures or other structures exhibiting finite width as opposed to
infinite lateral extent., The following paper included in this progress report

is the unreviewed part I of the series.




AN EXACTLY SOLVABLE MODEL FOR CALCULATING CRITICAL MISFIT AND
THICKNESS IN EPITAXIAL SUPERLATTICES. I. LAYERS OF EQUAL ELASTIC
CONSTANTS AND THICKNESSES.

Jan H, van der Merwe and W.A. Jessera)

Department of Physics, University of Pretoria, Pretoria 0002,
Republic of South Africa.

A parabolic interaction potential has been used to develop a model
for calculating the misfit dislocation (MD) energy in the case of a
superlattice of alternating layers of materials with equal elastic
constants and thicknesses., The model, which is believed to be a good
one for small misfits and to have some merit for covalent bonded
materials, is exactly solvable for the critical thickness above which
it is energetically favorable to lose coherency by the introduction of
MD's into the interfaces. It was found, for a given misfit f, that the
critical thickness for epitaxial superlattices free from their substrate
is somewhat more than four times that for a single epilayer on a thick
substrate. Furthermore, the critical thickness varies almost inversely
with misfit to the power 1,22, when Poisson's ratio is 1/3. It was
also shown that the critical misfit fC obtained by equating maximal
misfit strain and MD energies is a significant overestimate of fca
The results for a superlattice are compared with those of a thin layer

on a thick substrate,

a) Permanent address: Department of Materials Science, University

of Virginia, Charlottesville, Va 22901, U.S.A.




I. INTRODUCTION

The concept of a limiting misfit as the upper limit of misfit below
which epitaxial growth may occur, was introduced by Royer]. This
motivated Frank and van der Herwe2 to introduce the relevant concepts of
misfit strain (MS), misfit dislocations (MD's), critical misfit fc and
critical thickness h_. The eritical misfit £. is the limiting misfit
below which a layer of fixed thickness is homogeneously strained into
registry with the substrate and hc is the critical layer thickness
above which ar interface of given natural misfit loses registry by the
introduction of MD's,

When epitaxy became involved in the fabrication of devices needing
crystals of high perfection, knowledge regarding fc and hC assumed
great importance and calculations have been made assuming equilibrated
MD densities. Although notable successes had been achieved with this
approach3’4, observed densities were frequently greatly in excess of
the predicted densitiess—7. This discrepancy has often been attributed
to non-equilibrium features of the growth process and to approximations
needed to facilitate the analysis. Previous calculations have employed
the Volterra approximation to MD's using the concept of a "cut-off radius"
to account for the dislocation core energy, the presence of other MD's
and the nearby free sur;‘:’aces-8 for films of finite thickness., While
the reliability of these approximations has been justified9 for the
case in which the crystal thickness is of the order of the MD spacing
and larger, this is not so otherwise, Furthermore an approximate
procedure of energy minimization3’8’9 has often been used too, This

procedure, expressed by Eq. (42) is questionable particularly for small

misfits .




The above regimes of concern, low misfit and thin crystals, are
precisely those encountered in superlattice structures, It is thus of
importance to resolve these issues so that confidence can be gained in
the approximations adopted in calculations of fc and hc’ particularly
in the case of superlattices, At the same time one can contribute
towards solving the problems associated with the equilibrium accommodation
of misfit by MD's and MS for all misfits and thicknesses.

In this paper an exact solution of the "thin film-small misfit"
case for superlattices is obtained using the socalled parabolic modelg.
In this model the periodic interaction potential between the crystals
across an interface is modelled by a succession of parabolic arcs rather
than the sinusoidal description of the I‘~‘renkel—Kor~ntorowa]0 and Peierls
11,12

Nabarro models Because of its sharply peaked crests it will be a

more realistic representation for short ranged covalent bonding
characteristic of many superlattices of semiconducting materials.

In part I of this series we deal with the simplest case of a
superlattice of similar materials where the layers have equal thicknesses
as well as a thin film on a thick substrate of similar materials. This
will be extended and generalized in subsequent parts to the more
complicated cases of a thin superlattice film on a thick substrate and

to superlattices of cdissimilar materials and layers of unequal thicknesses.

IT. MODEL

We make the conventional assumptions (i) that the crystals A (upper)

and B (lower) have simple cubic structure with lattice parameters a and

11,12,13

b respectively , (i1) that a and b may be generated from a

reference lattice with lattice parameter c defined by‘3



p=Pa=(P+1)b = (P+%)c, (1)

where P is an integer and (iii) that the crystals deform under applied

forces like isotropic elastic continua with shear moduli My and My and

Poissons ratios v, and vy 11-13. Equation (1) defines f, ¢ and the MD

spacing p as

_ _ab <o __ab f=C__a-b =
PTa v (a +by)/2° P (@a+bv)/2

The interfacial atoms are subjected to two competing forces: the
atomic interaction across the interface which tends to align atoms on
either side and the opposing elastic forces. The former is most simply
modelled as a shear stress T having the periodicity ¢ in the relative
"displacement”" U of interfacial atoms which were in registry in the

reference lattice 11—12. The two most common models for T are the

Peierls-Nabarro model‘l_]S that uses a sinusoidal dependence, and the
parabolic potential model9 in which there is a piecewise linear

dependence between T and U:

T(U) = 1,U/d for lul < d/2 = ¢/2, (3)

where we may take the separation d of the two interfacial surfaces
equal to ¢ and the interfacial sﬁear modulus My is a measuée of the
bonding across the interface., The relation (3) is repeated within
every period c of U to form a saw tooth pattern. For mathematical

convenience we consider at first a one-dimensional sequence of saw

teeth as would obtain from one-dimensional misfit as defined in Egs. (1)

and (2). Two-dimensionality will be introduced in a subsequent section,

The elastic relaxation introduced by T(U) generates an atomic



pattern with a sequence of localized disregistries constituting a
single sequence of misfit dislocations (MD's)z’g. They are spaced at
intervals p and said to "accommodate'" the misfit f. The misfit can
also be partly accommodated by misfit strain e, i.e. a homogeneous
strain which is superimposed on the oscillatory strains of the MD's,
to reduce or eliminate the misfitz-g. Naturally this is only possible

when one or both crystals are of finite thickness, which is the case

in the crystal pairs constituting a superlattice.
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to have identical elastic properties., They will then be strained by
equal amounts when they are equally thick. Thus, if the average lattice

parameters in the strained configuration are a and b, the misfit strain

e will be given by

o1
]

= . (4)
a

It follows that in the strained configuration the relations (2) become

- _ =2 _ _ T2 - = - 2%

papUzed) oo l-e | pc_f-2e = . (5)
(1 - 2e/f) 1 - ef/2 P 1 - e

It is seen that f vanishes (p = ) when e =<% f, as is implicit in

Eqs. (4), and that to first order

c=c and f =f + 2 e. (6)

The second relation in Eqs. (6) is the mathematical statement that the
misfit is accommodated by MD's and misfit strain (MS) jointly.

An important consequence of the presence of MD's is that opposing




interfacial surfaces may undergo different displacements wa(x,0+) and
wb(x,O-) normal to the interface where superscripts a and b relate to
layers A and B respectively, Accordingly these displacements induce

normal forces which we may, using Hooke's law, model as an interfacial

normal stress

MW()] = f‘ii. [(x,09) - (x,001 | P W)

=7 3 il =2y e wll 0
1 1

where W(x) is the relative normal elastic displacement of the two

opposing surfaces, Vv; an appropriate Poisson's ratio of the interface

and d = ¢. Figure 1 displays one period of a superlattice of alternating

A and B layers, and the coordinate axes, with origin midway between MD's,
We have introduced the simplifying assumption that A and'B are

elastically equivalent including the interface.

This implies that

Sy, V.=V =V, =V (8)

and allows us to have the layers equally thick; of thickness 2h = 2nc,
say. Apart from automatically satisfying the lateral force balance
implied by Eq. (4), it also facilitates the simplifications in Eqs. (10)

below.

The bicrystal layer between midplanes PQ and P'Q' in Fig. 1 with
the interface MN may now be taken as a representative unit of the
superlattice, Careful consideration of the relevant physical principles

and the geometry displayed in Fig, | guided us to adopt the following




simplifying assumptions for the interior bicrystal unit of an extensive
superlattice containing MD's:
All field quantities (stresses pij’ T and N) have the periodicity

of the MD spacing p (or p) e.g.
P (X + Ps2) = p  (x,2). (9a)

Because of the source of antisvmmetry, U(x), one also has antisymmetry
in T(U(x)) of Eq. (3) and in pzx(x,O) = t(U(x)), hence pzx(x,z) is
antisymmetric in x:

pzx(-X,Z) = - pzx(x,Z). (9b)

The stresses P, and Py that act on the interface surfaces, are

continuous across the interface, i.e.

p° b
zx(x,0+) = pzx(x,O— =1l Uu(x))

(10a)
P2 (x,00) = p)_(x,0-) =NlW)] .

Because of symmetry pzx(x,z) and w(x,2) vanish on the midplanes PQ and

P'Q', 1i.e,
pzx(x,z) =0, w(x,z) =0atz==%h, (10b)

Three more remarks are appropriate. (i) Because the interaction
energy between the homogeneous misfit strain and the oscillatory
strains that are associated with the MD's vanishes they may be treated
independently, This allows us, as in Eq. (9a), to use p for the MD

spacing in the calculations and introduce the strained value p (see




Eq. (5)) when needed. (ii) Also, with the simple cubic crystals under
consideration there will be a cross grid of MD's, rather than a single
sequence., We make the simplifying approximation that the relevant
energies of the MD's are additive as is expressed in Eq. (31) below.
(iii) The conditions (10) strictly apply to the interior of the
superlattice, "far'" (possibly two to four layers) from the frée

surfaces and "substrate" employed to fabricate the superlattice.

ITI. GOVERNING EQUATION AND ITS SOLUTION

We assume that the MD's are long and straight. The related problem
is accordingly one of plane strain which is normally analysed in terms

of an Airy stress function X(x,z) satisfying the biharmonic equation14

V' =0 an

_ 3% _ %X o %
Pux 722 Ppp T T2 Py T T Fx0zC (12)
dz 9x

The solutions of (11) satisfying the periodicity (9a) and having

the symmetry (9b) can be expressed in Fourier transforms9

b

Xa’b = [(Aa’b + zCa’b) cosh mz + (8%*° + zDa’b) sinh mz]cos mx, (13a)

m = 2™n/p, n=1,2, ceaee ® (13b)

where A, B, C and D are as yet unknown Fourier coefficients and
summation is implied in all analogous subsequent expressions.

By applying (12) we obtain results of the form (deleting superscripts):




P - m(A +2C)+2D m(B +2D) +2Cy ¢k mz] cosmx (14)
{zz} m[{-m(A +2C) Jeosh ma +{-m(B +2zD) }sinh m ’
P, = @[ {m(B +zD) +Clcosh mz+ {m(A +2C) +D}sinh mz] sin mx.

In order to employ Eqs. (10) we need expressions for the x~- and z-

components of displacement u and w. We first obtain from Hooke's law

strains e.. a
the r [3 ij s

2ue [ “V)p_ ., - \)pzz], we, =P, ¢ (15)

m(A +2C) +2(1-v)D { m(B +zD)+2(1-v)C

Zue{xx ml{_ (A +20) - 2uD }cosh mz + ~m(B +2D) - 2vC }sinh mz] cos mx,
zz

]

we = m{ {m(B +2zD) +C}cosh mz+{m(A +2C)+ D}sinh mz} sin mx. (16)

We now calculate consecutively the rotation wy and the displacements u

and w by path integration of the form

Ju ou =
u=u o+ f(ggvdx + §E'dz)’ u =0, (17)
where
Efi 1 aezx aexx o 1 9 zZX aezz
3x 7 3x + 3z * 93z 2 3z Ix
(18)
3u du w dw

1}
(1]
[l
1]
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We obtain
Zuwy = 2(1-v)m?[ D coshmz +C sinhmz] sin mx.
2uu = [{m(A +2C) +2(1-v)D}cosh mz+{m(B +2D) +2(1-v)C}sinh mz]sinmx (19)

2uw  ==[ {m(B +2D) - 1-2v)C}cosh mz+{m(A +2zC) - (1-Zv)D}sinh mz] cos mx

and hence, at z =0

d by, 1-v by y .
=.’%+[£(A3-A)+T(D3-D ) Isin mx,

!

U(x)

(20)
W(x) = -2-17 [m(Bb -8%) + (1-2v) (c? -Cb)] cos mx,

where we had used Eqs, (8), and xd/p is the nonelastic vernier relative
displacement due to the misfit.

The governing equations, i.e, the equations defining the Fourier
coefficients are obtained by substituting from Eqs. (3), (7), (14), (19) and

(20) into (10):

~m2A% + m?A® = 0 (a)
n(mB? + C*)-m(mB® + c°) =0 (b)
n{m(8% + 0?) + c*}c +m{m(a? + hc?®) +D%}s = 0 (c)
m{m(Bb - th) + Cb}c —m{m(Ab - th) +Db}s =0 (d)
(21
{(m(8% + np?)-(1-2v)c?}c + {m(a? + ncH-(1-2v)0?}s = 0 (e)
{m(Bb - th) - (l—ZV)Cb}c —{m(Ab - th)-(l—Z\))Db}s =0 (£)
a 1 a a 1 b by _
_‘mzA + m {mB _("‘2\))0 } - m {mB -(]"'2\))0 } = 0 (g)
a a m,,a by _ I-v a _ by _ 1_|(--l)n+l h)
m(m.B +C)—i'&(A"A) ‘d—(D D)—-——-T?n—-——,




where

€ = coshmh and s = sinh mh, (22)

we had used the elastic equivalence of crystals A and B (See Egs. (8))

and (-1)"*!

d/mn for the Fourier sine coefficient of xd/p. Note that ¢
in (21) and(22) is not the same as the reference lattice constant ¢ in

Eq. (1). The latter we also approximate by d. This system of linear

equations may be solved to give

Ab = A% = o, A = -m"(mh +sc) -2ym®s?
RIS W N S TCT) b

C2 c2 ’ A = (P +Q)

; (23)

P = (mh +sc)m*c ?[m(mh +sc) +2ys?]
Q = 2(1-v)d 'm’lm(mh +sc) +2ys?].
where,
hy = 2(1-v)h [(1=2V)d = 4n for v=1/3, n = h/d = h/c. (24)

Important quantities which we need for subsequent calculations are

pzx(x,O)and U(x). We obtain by substituting from Eqs. (23) into (14)

and (20)
P, (x,0) = Z P“Di sinmx, (25)
X n=1
o
U(x) = 5;5 + z Q“D: sinmx, (26)

n=]

a a .,
where P, Q and Dn are the P, Q and D” in Egs. (23).

Also the quantity Q/P plays a significant role and may be
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written as

$(X) =np%§% - izx (27)
where
B (]ﬁg)p = (lﬁv)f and
(28)
X = 2thn/p = 2mfn = Zn

and Yh is defined in Eq. (24).
The relations (23) - (28) now constitute the solution of the
problem concerned with the atomic relaxations resulting from the

competing interactions., A plot of U v.s., x will display the resolution

. . . 13
of the interface into a sequence of MD's spaced at distances pg’ .

When MS coexists with MD's p,c and f must be replaced everywhere by

the MS dependent quantities P, ¢ and f defined in Egs. (5).

IV. ENERGY

The energy per unit area of an interface consists of several

contributions: the MD strain energies Eg and Eg in the two crystals and

the energy of misfit Em due to the residual disregistry at the interface.

The homogeneous misfit strain energies Ef and E° in the two crvstals may
e e

simply be added to the above energies to yield the total energy. The sum

of the latter two energies is given by the well known expressionB’15

E; = 4l (1+v) / (1=v) ] uen@? (29)

which incorporates the equality of the elastic constants (Eq. (8)) and

equality of MS along the interfacial cubic axes. It has also previously

been
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9 . . . .
shown™ that the energy per unit area of interface associated with the

. b . . . .
MD's i.e. ED = E; +Ep o+ Em inunits of pc/4m?, is given by

= _.B_C_ = p/2 dx Cx UC
ey = Ep/ il f_p/_,_ = Pox (%5 0) / i
‘; 1
= = (30)
n=l nfn + 8 $(X)]

where the second line follows on using Eqs. (25) - (28)., Since in the
case of quadratic symmetry under consideration there is a cross-grid of

MD's the total energy per unit area of the interface is given by

8(1+v)uen el 1-v =
E=E 42 =7 + ———— ¢ E,DI, (31
" z 1672 (14v)n D

where everywhere B and X should be replaced by B and X i.e. f by f, to
stress their dependence on the MS e as defined by Eqs. (5) and (6).

We can execute two consecutive approximations to the results in
Eqs. (30) and (31), which are of interest., The first one is the thick
(h,n 2> ) limit Ew. It follows from (27) and (28) that in this case

(provided £ = £ # 0).

p(X) =1 for n >, and (32)
- 1

©° _ o yc o _

ey = Ej /zm2 = ni:l TR (33)

. . . 9 . .
This agrees with a previous” result and may be written in terms of

. 16
derivatives of the gamma function I'(x)  as

= Bly(1 +1/8) +Y°] , (34)
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where Y(x) is the digamma function I''(x)/T'(x) and Y= 0.5772 ... is

Euler's constant,

The second approximation to the result in Eq. (33) is to replace

the sum by an integral:

o o dn - 1
ED = fni m =8 Qﬂ(]"' E;«.F). (35&)

Both the value of the lower integration limit n, and the accuracy of

this integral in representing the sum may be assessed through a
comparison of the relations in (34) and (35). As n =1 for the first
term in the sum of Eq. (33), the appropriate lower limit of the

integral in Eq. (35a) is expected to be somewhat less than unity,

We obtain the value of n as

n, = exp(-xg = 0,561

i (35b)
by comparing Eqs. (34) and (35a) for large values of 1/8.

In this case

0

€p = B in(ey B) =~ B8 &n(1/n.B), (36)

which gives the result in Eq. (35b) for n..

We now return to the general case of Eq. (30) and adopt the
approach employed for the "infinitely thick" layer in replacing the
sum by an integral:

-3 ™ dX
ey =L J

"% R[X + b (X))

= TI(n;T,0), (37)
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Using the transformations and definitions of Eqs. (28)

we obtain

wh = Zn; Z =2mf, n=h/c, £ =f ~ 2e,

=i
i

(38)
T/B = 201-v)n = a,
where the "bar" signals the presence of MS e.

Near the critical thickness, which is presently an important
regime X = 0 because £ > 0 and hence ¢(i) - oo, The series accordingly
converges exceedingly slowly and the integral approximation (37) becomes
more convenient, However, the integrand is rather complicated and does
not lend itself to exact integration. Since ¢(X) tends to unity as X
becomes large and is already almost unity at X = 2 it remains to find
an acceptable approximation for small X. Power series expansion of
¢ (= coshX) and s suggests a sufficiently simple representation of the

form ¢(i) = A/X + BX where A and B are rational functions of n.

Numerical comparison has shown that

- w2
px) = | = O+ H for 2
2X (39a)
1 for = 2

>4t
N

o1}

is an acceptable approximation, It is accordingly convenient to
divide the interval (niz,‘”) of integration into two subintervals

(nii, it) and (it, ) where the transition value of X is
X, =2+ n.g . (39b)

We obtain on integration
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ey = EI(niE) = é.{%- [arctanB;(t - arctan BniE] + n (1 +.§1 )}, (40a)
t

where

_(9tsnyd = _ 3

B'{m&n ¥, T = Ba (40b)

and the niZ dependence of I(niE) relates only to the lower limit nii
in (37) and not niE in (39b).

A comparison of the integrated relations (40) with the sum in
Eq. (30) (summing over sufficient terms to reach Zn = X = 2 and
integrating from X = 2 onwards) shows that the discrepancy does not
exceed 67, The sum is the greater of the two. Note, however that
the relations (40) should be restricted to misfit values £ < 1/m.
Above this value Eq. (35a) should be used,.

In the limit T = 2rmf > 0 (f = 0) the thickness approaches the

critical value and I(nig) in (40) becomes

2 ) o
1(0) = 5§ arctan 2B +E!Ln(1 +-2-). (41)
When however, n and hence { = 2mf = 2mMf becomes large at nonzero

£, €, as defined by (40a) approaches the value in Eq. (35), as it

should,

V. EQUILIBRIUM: CRITICAL MISFIT AND THICKNESS

In the past the critical misfit f at which the minimum energy
configuration undergoes a transition from a coherent interface to one

with MD's has often been approximated by setting the energy for

. . - 1 .
the coherent conficuration (MS e =5 fc for a superlattice) equal
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to one with only MD's, characterized by natural misfit £, i.e.

E_(£,,m) = 2B, (£,0), (42)

the contention being that there are either no MD's or enough to
accommodate practically all the misfit as in the one-dimensional Frenkel-
Kontorowa modelz. Alternatively, the critical thickness hc =n.c is

the thickness at which equilibrium considerations require MD's to be
injected for given misfit f. Thus n. is defined by (42) by setting

fc = f and n = nc'

The true criterion for the minimizing strain Em is
3E/de =0 at e=e_. (43)

Among others we wish to assess the accuracy of (42). Since the integral
formulation of €p in Eq. (37) facilitates the numerical evaluation of
€p we perform the minimization of E in Eq. (31) using the relation (37)

rather than the series in (30). We obtain after some simplification

- (d=v) o {3 3 =1

em = m [I(Xm,a) {Xm + atb(xm,a)} ], (44a)
where

X =mng, L =2mf =2m(f - 2e), (44b)

as may be seen with reference to Eqs., (6) and (38), Hence, for a given
thickness n, the critical misfit f_ follows by letting Em'* fc/2

yielding

_ (1=v)
fc(n) N TTE)) 1(0,0), (45)
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interface is large, one needs analytical expressions that accurately
give the energy of the MD arrays per unit area per interface. Both
of these regimes of interest have been satisfied through the
development of Eqs. (37) - (41). It is instructive to compare the
energy values obtained from this result for different misfit values,

which must be small because of the approximations involved in Eq. (6).

Figure 2 displays the functional dependence of the MD energy

per unit area per interface of a superlattice free from

e

ts substrate,
The thick curve labelled % is a plot of Eq. (35) which represents
"infinitely thick" layers. The numbered curves are plots of Eq. (40)
with each number representing the thickness value. For purposes of
comparison the MD energy for a thin layer on a thick substrate is also
shown. The superlattice curve labelled 1 closely approximates

the curve for a monolayer on a thick substrate up to values of £ < 0.1,
The thick curve labelled °° also represents the asymptotic value of

the thin layer on an infinitely thick substrate for the layer

thickness being large. Because of the choice of a representative

section of the superlattice for purposes of calculation, a monolayered

superlattice corresponds to n =-% (see Fig, 1) and is labelled by
this thickness value, Only for the infinite layer is the slope of
the curve infinite at the origin., 1In all cases the slopes detrease

with increasing misfit at constant thickness and also decrease at

zero misfit as the thickness value is decreased. The nearly linear

rise of the energy with misfit for a very thin layered superlattice

PRECEDING PAGE BLANK NOT FILMED
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can be understood from the arrays of MD's which act nearly
independently of their in-plane spacing and therefore contribute to
the superlattice energy essentially in proportion to their number
density.

One notices that there are regions of f for which the value of
€ exceeds that value e; for the infinitely thick layered

superlattice., The misfit values for which this occurs are near

. .
nf = 1/m which is also near t

[ A * . 3
The rise of Ep over £, 1is not caused by the approximations

involved in Eq. (39) but is also found in the exact representation

Eq. (30), Mathematically it occurs because ¢(X) in Eq. (30) falls
below unity near it while ¢(X)= unity for all X when n = o

(Eq. (33)). Physically this result can be understood as a consequence
of the boundary conditions for the superlattice case. There is the
constraint of zero displacement at the midplanes of a superlattice
layer while the free surface of the thin layer on a thick substrate

is stress free,

A comparison of the MD energy of a superlattice with that of a
single layer on a thick substrate shows that when the layer
thickness of the superlattice is small, strong cancellation of the
stress fields of the MD's in adjacent layers occurs provided the

misfit is not too large, The magnitude of this cancellation
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reduces the MD energy by about 207 in a monolayered superlattice of
gmall misfit as compared to a single monolayer on a thick
substrate,

Also shown in Fig, 2 is a graphical comparison of the two methods for
determining at a fixed thickness n, the critical misfit fc above which
it is energetically favorable to introduce MD's into the interface of a
superlattice. This pair of misfit-thickness values is exactly equivalent
to giving the critical thickness nc(=n) for loss of coherency in a
superlattice of fixed misfit f(=fc). The one method of equating the
homogeneous strain (MS) energy of a coherent superlattice to the MD
energy when all the misfit is accommodated by MD's is given analytically
by Eq. (42) and graphically by the intersection point of the homogeneous
strain energy (plotted against f = 2e) with the MD energy curve, Plots
of this situation are shown for two thickness values. The homogeneous
strain energy curves A and B (dotted parabolas) correspond respectively
to half-layer thickness values of n equal to 10 and |, The intersection
points are near misfit values respectively of 0.0315 and 0,154 which are
also the calculated values from Eq. (42). The second and proper method
of calculating the critical misfit-(critical) thickness pair of values
is equivalent to equating the slope of the MD energy curve at the
origin (all of the misfit is accommodated by MS) to the slope of the
same value on the homogeneous strain energy curve, This is the
condition expressed by Eq. (43) for Em = % f and is shown in Fig. 2 for
the case n = | by the two (dashed) tangents T. One tangent touches the
MD energy curve at the origin to determine its slope, and the other
tangent of the same slope is placed in contact with the homogeneous

strain energy curve at the unique point of the same slope labelled i.
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This point is at the misfit value 0,131 which is also the calculated
value from Eq. (45). Notice that the misfit values given by the two
methods, one proper and labelled i, the other approximate and
labelled ii are rather different (0,131 versus 0.154); ii is too high
by about 177. Clearly the proper method is preferred and offers an

i ' , 8,9,1
improvement over the approximate one.3’ »9,17

An exploration of how the magnitude of this overestimate varies

with thickness revealed that it varied from about 177 for a monolayered

superlattice to or large values of n, i.e., over a thousand
monolayers, A similar comparison of the estimated critical thickness
for a given misfit showed that the estimate exceeded the proper value

by about 307 when the layer thickness is small and by about 407 when

w

n is large. This result suggests that one could "correct" the

estimated value of critical thickness by multiplying it with a factor

of about 0,75,

The main objective of the present considerations is to find an
exact expression for calculating the critical thickness n. above
which loss of coherency at a given misfit is energetically favorable
(Eq. (45)). The evaluation of this expression for the case of uniform

elastic constants (ua =My = U = u) and v = % is displayed in the
curves of Fig. 3. Here one sees a strong dependence of n, on
natural misfit f for small values of £, From a log-log plot (inset
on Fig, 3) of the thickness-misfit values a nearly straight line

emerges so that over a range of values a power law models the

dependence fairly accurately. It follows from the figure that
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n_ 0,114 g71e22 (46a)

or equivalently

£, % 0,17 n0.82, (46b)

These expressions describe the equilibrium case for which there are

no barriers to the acquisition of MD's. 1In practice barriers exist

and therefore one expects significant departures from these

equilibrium values when comparisons with experimental values are made.
These differences between experiment and theory are common with the
experimental values of MD densities exceeding the theoretical ones
particularly in the case of semiconductor materials where the frictional
force opposing the motion and nucleation of MD's can be quite large. One
can see the magnitude of these differences for example in the work of

Matthews3 and People and Beana.

It is of interest to compare the results of the present development
for superlattices of individual layer thickness 2n to the same parabolic-
potential model but for an infinite substrate and a single epitaxial

film of equivalent thickness 2n (Appendix). There are two differences
between these two cases, The first difference is that for the case of
superlattices, the parallel MD arrays in adjacent interfaces strongly
interact when the layer is thin and lower the energy of the MD array

in comparison to that of the single-interface case on the infinite
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substrate, The second and more important difference lies in the
accommodation of misfit by homogeneous elastic strain. For the
superlattice each layer accommodates half the misfit so that the N
interfaces and N+l layers can become coherent with one half of the
elastic strain that is required to produce a coherent interface in the
infinite-substrate case, Because of the square dependence of the
homogeneous strain energy on strain, this introduces a factor of four
between the two cases, The combined effect on critical thickness of
these two differences is displayed in the Table.

The thickness of the single layer is compared to twice the half-
thickness of each superlattice layer. The ratio of layer thickness for
loss of coherency in the case of a superlattice, as compared to that of
a single layer on a thick substrate is about five for small layer
thicknesses and approaches four for large thicknesses. This result
agrees with factor of four argued for superlattices by Matthews and
Blakesleels. The ratio of critical misfits for these two cases also
approaches four for thick layers but starts at a factor of about three
for a thin layer,

The ratio of critical thicknesses greater than the factor four
introduced by the homogeneous elastic strain term can be understood in
terms of the slope of the MD energy as a function of misfit, The MD
energy for the superlattice case is less than that for the case of an
infinite substrate, Correspondingly the slope of this curve is also
less at the common value of misfit at the origin, In satisfying the
parallel tangent condition this results in an overall shift in critical
thickness values by a factor somewhat more than four when comparing

the superlattice case to the case of an infinitely thick substrate.
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VII. CONCLUSIONS

A parabolic interaction potential has been applied to the case of
a free standing superlattice of many layers to obtain an exact solution
for the energy of the arrays of misfit dislocations at the interfaces.
An analytic expression for this energy as a function of misfit and

layer thickness is provided in Egs. (37) and (40). The main results of

this theoretical development are:

1. The energetically favored critical thickness for loss of coheremcy

depends approximately inversely on misfit to the power 1,22 for the

case of uniform elastic constants and a Poisson's ratio of 1/3.

2. A comparison of the critical thickness in a superlattice with that
of a single layer on a thick substrate shows that for a fixed misfit,
the critical thickness of the superlattice is between four and five
times that of the single layer. This result occurs because for the
superlattice case each layer accommodates half the misfit and the
derivative BED/Bf of the MD energy, ¢
the thick-substrate case at £ > 0, except for large layer
thicknesses where the values of eD approach one another.

3., Estimating the critical thickness and critical misfit by equating
the maximum strain energy (e = £/2) to the maximum misfit dislocation
energy (e = 0) was shown to be rather crude; the estimated critical
misfit for given thickness is too high by about 257 for all
thicknesses, Similarly the estimated critical thickness for given

misfit is too high by about 357,

4, The equilibrium elastic strain and hence the lattice constants of

D is somewhat smaller than that of
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the superlattice vary nearly inversely with thickness once the

critical thickness for loss of coherency has been exceeded.

5. The pointed high crests of the parabolic potential, which is the
main objection to the model has on the one hand little impact when
the misfit is small (MD's far apart) and otherwise may have merit
for short ranged covalently bonded materials, Its main advantage

is that it yields an exactly solvable model for the critical misfit

and critical thickness.

6. The MD energy per unit area per interface for a thin layered

superlattice can rise slightly above that for an infinitely thick

layered superlattice when nf is near 1/m,

7. The analysis applies to the interior of the superlattice far from
the ffee surfaces.
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APPENDIX: THIN EPILAYER ON A THICK SUBSTRATE

A comparison of the thin epilayer -thick-substrate case with the.
superlattice had always been of great interest. This interest still
persists, The former can be dealt with by some modification of the
superlattice analysis. Although this had been dealt with previously
the results needed for the present comparison have not been given and
can be derived rather compactly from the foregoing calculations.

Let A be the thin layer of thickness h and B by a semiinfinite
substrate, The main modification in the model is that the midplane

boundary conditions (10b) need be replaced by

p:x(x,z) =0, pzz(x,z) =0 at z =h (A. 1
for the free boundary of A and

pij(x,z) >0 as z > (A.2)

for the vanishing of the stresses in B far from the interface; i (and ji)

being either x or z.
The condition (A.2) can be incorporated by deleting the e M2 parts

of xb, (Eq. (13a)) and in subsequent expressions relating to B, This

is most simply handled by putting
A’ =8°, ¢ =0, (A.3)

We may thus write down the quantities
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pZz = m[m(Ab + sz) + Cb]emz sinmx
P:z = - mz(Ab + sz)emz cos mx
(A.4)
ub(x,z) = E% [m(Ab + ZCb) + Z(I—V)Cb]emz sinmx
wb(x,z) = - 7%{m(Ab + sz) - (I—Zv)Cb]emz cOsmx

which we need explicitly below and in which we had used the elastic
equivalence in Eqs., (7)., It now follows from Eqs. (19) and (A.4) that

b

UGx) = xd/p + {mA% + 2(1-v)D® - ma® + 2(1-v)cP} /2y

(A.5)
W{x)

{-mB? + (1-2\))Ca + mAb —(l-2v)Cb}/u .

Substitution from Eqs.(14), (A.4) and (A.5) into (10a) and from (A.4)
into (A .1) shows that Eqs. (21) (a) - (c) and (h) are unchanged and
that otherwise we obtain for pzz(x,h) =0 in (A,1) and p:z(x,0+) = N{w(x)]

in (10a) the relations

-m(A? + h¢®e - m(B* + w0H)s = 0

1
(1-2v)d

(A.6)

-m?A? + [mB® - (1-2v)c2 - mB® + (1-2v)C") = O,

(A.6) and (21) (a) - (¢) and (h) are six equations needed to solve for
the six unknown Fourier coefficients, Our main interest is to
calculate €_ using the integral in Eq. (30). Hence we only need the

D

values of B? and C? in

p:x = m[mB? + ¢?] sinmx. (A.7)
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We obtain
B2 = -(m’h? + Sm*h?)R/A,
c? = [m?s?+ Sm(sc + s? + mh) JR/A
A =m®+Q, R= (u/m)ED"",
P =m(s? - m®h?) + m?8(s? + sc + mh - m?n?),
Q = M?(s? + cs - mh - m?h?) + mA\§ (c +s)?, (A.8)
A = (1-v)/d, & =1X/(1-2v), a =72/B,
P, (6,0 = R/(1 + @),
=3 - X
€ 2 1 =7 - dX

nln +6(X) /8] 20 XX + ad(®)]

) = M _ Bohg _ 1 X(s? +es -X - XP)+ Sh(c +s)?,
LA 7y iy e =2 o= .3 32
X(s® =X°) +6h(s” +sc +X =-X°)

where c, s, and X have been defined in Eqs. (22) and (28). At this
point it is of interest to note that ¢(X) > 1 as X > (n > ) as
before so that the same result as in Eq. (33) is obtained for large
thicknesses but that no simple expression like (39) for small X, could
be obtained that connects accurately enough to ¢(i) =1,

With respect to energy minimization we obtain, instead of the

relations (6), (31), (38), (44a) and (45):

= - = = T -t = = t t
ft = ft + et, ct = 2ﬂnt(ft-e), Xt =nct, X; =nicm’ o =2(1-v)n
t ,~t2 - - _
E = 4(l~]~v_)5cn [(_e_zi) + (1 -v) tl;tI(xt,at)]
8m2 (1 +v)n

(A.9)

b = ey LIRSS - &)+ a%t(RE,aM) 7]

t, t 1=V t
fc(n ) = m I(O,Ci ),

with I(ii,at) and I(O,at) given by Eq. (37) not by Eqs. (40a) and (41),
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where the letter t designates (t)hin film-(t)hick substrate., It is
notable that the expression for 'é:; in (A.9) is of the same form as En;
in Eq. (44a) but that the expression for fct: in (A.9) differs from
that for fc in Eq. (45) by a factor of two; that is apart from the

$ in Eq. (A.8) is a different function and that we

i

fact that ¢>t

usually make a comparison where the layers in the superlattice have the

same thickness as the thin film, i.e. n = ';' nt.




31

References

! L. Royer, Bull. Soc. Fr. Mineral. 51, 7 (1928).

i0

11

12

13

15

16

17

F.C. Frank and J.H. van der Merwe, Proc. Roy. Soc. Ser. Al98, 205, 216
(1949).

J.W. Matthews, Dislocations in Solids, Ed. F.R.N, Nabarro, (North
Holland Pub. Co. 1979), p.461; Epitaxial Growth, Ed., J.W. Matthews,
(Academic Press, New York 1975), p.559.

M. Shinohara, T. Ito, K. Yamada, and Y. Imamura, Jap. J. Appl. Phys.
24, L711 (1985).

J.C. Bean, L.C. Feldman, A,T

J. Vac. Sci. Technol. A2, 436 (1984).

P.M.J. Mare&, R.I.J. Olthof, J.W.M, Frenken, and J.F. van der Veen,

J. Appl. Phys. 58, 3097 (1985).

E.J. Fantner, H. Clemens and G. Bauer, in Advances in X-ray analysis,
Vol. 27, edited by Cohen, Russ, Leuden, Barrett and Predecki (Plenum
Publishing Corporation, 1984) p.171.

R. People and J.C. Bean, Appl. Phys. Lett. 47, 322 (1985); 49, 229 (1986).
J.H. van der Merwe, J. Appl. Phys. 34, 117, 123 (1963).

J. Frenkel and T. Kontorowa, Phys. Z. Sowjetunion 13, 1 (1938).

R.E. Peierls, Proc. Phys. Soc. London, 52, 34 (1940).

F.R.N. Nabarro, Proc. Phys. Soc. London, 52, 90 (1940).

J.H. van der Merwe, Proc. Phys. Soc. London, A63, 616 (1950).

S. Timoshenko, Theory of Elasticity (McGraw-Hill, New York, 1934)

pp. 12-134,

W.A. Jesser and D. Kuhlmann-Wilsdorf, Phys. Stat. Sol.19, 95 (1967).
Handbook of Mathematical Functions,Eds. M. Abramowitz and I.A. Segun
(Dover Publications, New York, 1968) pp.259, 267-276.

J.H. van der Merwe, J. Woltersdorf and W.A, Jesser, Mater. Sci. & Eng.,

81, 1 (1986).




32

18 J.W. Matthews and A.E. Blakeslee, J. Cryst. Growth 27, 118 (1974);

29, 273 (1975); 32, 265 (1976).



33

TABLE. Comparison of the critical thickness nz of
a single layer on a thick substrate and 2nc of a
layer in a superlattice when the natural misfit f is
the same in both; similarly the critical misfits fc

and fz respectively are compared for equivalent

. t
thicknesses nc = 2nc.

t t t t
f Ne 2nc chlnc fc/fc
07143 1 5.09 5.09 2.78
.04395 2 10,08 5.04 2,99
,01283 10 49,3 4,93 3,45
.001955| 100 460 4.60 3.66
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Figure Captions

Fig.l. Schematic representation of a superlattice of alternating
layers A and B of equal thickness 2h = 2nc. The AB and BA
interfaces are represented by solid lines and contain
planar arrays of MD's of alternating sign as shown. The
coordinate origin is in an interface and lies midway between
MD's with the z-axis normal to the interface planes and the
y-axis along the axis of the MD's shown. A representative
section of the superlattice is given by the mid planes P'Q'
in layer A and PQ in layer B each lying at a distance h = nc
on either side of the reference interface MN that contains
the origin and is located in the interior of the stack of
layers.

Fig.2. Misfit dislocation energy per unit area €p (numbered solid
curves in units of Hc/4m?) as a function of misfit £ and
homogeneous elastic strain energy per unit area EE/(UC/ZHZ),
(lettered dotted curves) as a function of e = £/2, For

calculational purposes ua =y =1

b ; ~Hand V= 1/3. The
thick curve labelled = corresponds to Eq. (35) while the
rest of the numbered curves are given by equation (40) with

the numbers referring to the half-thickness n = h/c.
Strain-energy curves A and B refer respectively to n = 10 and

1. The tﬁo linear tangents T are drawn by dashes for the

case N = | and define the critical misfit fC by B(ZED+ EE)/BE =0
at Em = fc/Z given by point i. Point ii represents an

approximation to the critical misfit as calculated by

ZED(fc) = E.é(em = fc/2). Note that the value of critical




Fig.3.
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misfit at i (fc ~ 0.131) is rather different from that of
point ii (fc ~ 0.154),

Graph of the relationship betweén critical thickness n. and
the corresponding critical misfit fc. Note from the inserted
log-log plot that the critical thickness is reasonably

approximated by a power law with an exponent near 1,22,
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